MATH 103B – Discussion Worksheet 3 April 20, 2023

Announcements:

- 1. Midterm 1 is on Wednesday April 26 during class time.
- 2. There will be NO discussion session on Thursday April 27.
- 3. In preparation of the midterm, Steve will hold office hours on Tuesday April 25 and Wednesday April 26 9:50-10:50am at AP&M 5412 *instead of* during the usual time on Thursday April 27 9:50-10:50 am.

Topic: Prime and maximal ideals (Judson 16.4)

Problem 1. Let $\varphi : \mathbb{Z}[x] \to \mathbb{C}$ be defined by $\varphi(f) = f(\sqrt{3i})$. Using the same method as in Problem 4 from last week's discussion, we can see that φ is the ring homomorphism. Compute Ker φ and Im φ . Using the first isomorphism theorem, what can you conclude?

Problem 2. Consider the follow ideals in $\mathbb{R}[x]$.

- 1. Is (x^2-1) a prime ideal? (Hint: Recall $R[x]/(x^2-1) \cong \mathbb{R}^2$. Is \mathbb{R}^2 an integral domain?)
- 2. Is $(x^2 + 1)$ a maximal ideal? (Hint: Recall $\mathbb{R}[x]/(x^2 + 1) \cong \mathbb{C}$.)
- 3. Is (x^2) prime and/or maximal?

Problem 3. Is $(x^2 + 3)$ prime and/or maximal in $\mathbb{Z}[x]$.

Problem 4. Let R be a commutative ring with unity. Recall the definition of nilpotent elements of R. Let $Nil(R) = \{a \in R | a \text{ nilpotent}\}$. Prove that the set of nilpotent elements of R is contained in the intersection of all prime ideals of R, i.e.

$$Nil(R) \subseteq \bigcap_{\mathfrak{p}\subseteq R \text{ prime}} \mathfrak{p}.$$

Problem 5. Let R be a commutative ring with unity, \mathfrak{p} a prime ideal in R. Suppose I_1, \ldots, I_n are ideals in R such that $I_1 \cdot \ldots \cdot I_n \subseteq \mathfrak{p}$. Prove that $I_j \subseteq \mathfrak{p}$ for some $j = 1, \ldots, n$.